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Abstract—The thermal stability of [B]1ZSM-5 (boronsilicalite) has been examined by IR, XRD,
"B MAS NMR and XPS techniques. [B]ZSM-5 and amorphous borosilicate were converted to a-
cristobalite at high temperatures (=750C). However, Na-free amorphous borosilicate was not convert-
ed to a-cristobalite at 750C. Therefore, the presence of Na® ions in [BJZSM-5 would determine
whether this transition occurred or not. When the phase transition to a-cristobalite occurred, most
of B atoms tetrahedrally coordinated were released from the ZSM-5 structure and migrated to the
exterior surface as a horon compound having trigonal BO, units and oxidation states of 3.

INTRODUCTION

[somorphous substitution of various heterosatoms in-
stead of Al atoms in the ZSM-5 structure has drawn a
considerable interest recently. [B]ZSM-5, one of the
ZSM-5 analogues, has been reported to have catalytic
activity different from [Al]ZSM-5 for a number of acid-
catalyzed reactions [1]. The fact that the catalytic ac-
tivity of [B]ZSM-5 is due mainly, if not entirely, to
the trace amounts of B atoms in the ZSM-5 structure
has been confirmed by solid state NMR [2-4] and X-
ray diffraction studies [5, 6]. However, the structural
changes including the coordination of B atoms in the
ZSM-5 structure remained unknown when [BJ]ZSM-5
was heated at high temperatures. In this paper, we
present the details of structural changes of [B]ZSM-
5 at high temperatures, which are investigated with
IR, powder X-ray diffraction, "B magic angle spinning
NMR, and X-ray photo-electron spectroscopy.

EXPERIMENTAL

[B1ZSM-5 was prepared by hydrothermal crystalli-
zation at 150C for 3 days from a mixture containing
colloidal silica (S10. 40 wt%), boric acid. NaOH and
tetrapropylammonium bromide (TPABr) according to the
method of Howden [7] and Woo et al. [8]. The SiO./

:lo“\hom all corresponciences shoulzirg a‘ddre;sed.

B.O, and Si0,/Na;O) mole ratios of the reaction mixture
were 9.1 and 10.5, respectively. The final pH of reac-
tion mixture was 10.4. Amorphous borosilicates were
prepared under the same preparation condition as that
of [B]ZSM-5 in the absence of TPABr or NaOH. Elemen-
tal analyses were done with atomic absorption spec-
troscopy. X-ray diffraction patterns were taken on a Ri-
gaku D/Max II-A diffractometer using Ni-filtered Cu
Ko radiation. IR spectra were recorded with an An-
alect 6160 Fourier Transformed Infrared Spectropho-
tometer. The "B NMR spectra were obtained using
a Bruker AM-200 high resolution NMR spectrometer
operating at a field of 4.7 T with a standard MAS
probe. MAS was at 3.8 kHz using conical Delrin rotors.
"B NMR measurements were carried out on fully
hydrated samples which had been kept in a desiccator
for 48 h saturated with NH,Cl aqueous solution. The
chemical shifts were determined from BF,0Et, used
as an external reference. The XPS measurements were
carried out using a ESCA spectrometer (Model PHI
550, Perkin-Elmer). Monochromatic Mg Ka X-ray
radiation (1253.6 ¢V) was used. The pressure in the
analyzer chamber was 10 "torr and the analyzer pass
energy was 10 eV. The C(1s) (284.3 eV) line from the
carbon impurity in [BJZSM-5 was used as an internal
standard to correct a shift in binding energy due to
a charging effect (see Table 1). The correction factor
was subtracted from the observed binding energies
to compensate a charging effect.
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RESULTS AND DISCUSSIONS

1. Phase transition of [B]ZSM-5 and amorphous
borosilicate

Elemental analysis showed that the actual mole ra-
tios of Si0./B.,0,; and Si0./Na,O in the [B]ZSM-5
were 60.0 and 63.9, respectively. IR spectrum [Fig. 1
(a)] and XRD pattern [Fig. 2(2)] of [B]ZSM-5 as syn-
thesized were the same as those of ZSM-5. When
TPABr or NaOH was not added to the reaction mix-
ture, amorphous borosilicate was prepared instead of
[B]ZSM-5. However, for the amorphous borosilicate
prepared in the absence of NaOH, small amount of
crystalline ZSM-5 phase was found as an impurity in
the XRD pattern of corresponding sample [Fig. 2(b)].

It was reported that [AIJZSM-5 (SiC»/Na,0=50.6)
was thermally stable enough to keep the structure
unchanged up to 930C [9_. Howden [7] reported that
the boron counterpart of [B]ZSM-5 (SiO./Na,O=109.9)
was converted to cristobalite at temperatures above
700C. However, Beyer[ 10] reported that Na-free [B]
Z5M-5 showed the characteristic XRD pattern of the
ZSM-5 structure even after calcination at 1000C. Fig. 1
(a) and (b) indicate that the [B]ZSM-5 (Si0,/Na,Q =
63.9) calcined below 600C shows the characteristic
IR and XRD patterns of the ZSM-5 structure. When
[B]ZSM-5 was calcined at 750C, two typical bands
of the ZSM-5 at 453 and 561 cm ! disappeared and
two new bands at 504 and 622 cm ! appeared [ Fig. 1
(c1]. And the IR spectrum was nearly same as that
of SiQ, guartz powder calcined at 150(/C which had
the structure of cristobalite [11]. Therefore we can
conclude that [B1ZSM-5 is converted to cristobalite
at 750C.

Such a phase transition .was also observed for the
amorphous borosilicate prepared in the absence of
TPABr.

Elemental analysis showed that the mole ratio of
Si0,/Na;O in the prepared amorphous borosilicate was
50.9. The IR spectra of amorphous borosilicates are
shown in Fig. 3(b) and (d). When the amorphous boro-
silicate was calcined at 750C, a new IR band appeared
at 622 cm ! and an IR band at 475 cm ' was shifted
to 486 cm ' [Fig. 3(d)]. And by the comparison of
Fig. 3(d) with Fig. 1(d), it was known that amorphous
borosilicate containing Na® ion was converted to cris-
tobalite at 750C.

However, Na-free amorphous borosilicate prepared
in the absence of NaOH was not converted to cristo-
balite at 750C. This was evidenced by the fact that
there were no significant changes in the IR spectrum
before and after calcination at 750C [see Fig. 3(a) and
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Fig. 1. Infrared spectra of [B]ZSM-5 (a) as synthesized,
(b) calcined at 600C, (c) calcined at 750C, and
(d) SiO, quartz powder calcined at 1500C (cristo-
balite).

(c)). And most of Na-free amorphous borosilicate was
still remained as an amorphous phase even after calci-
nation at 1000C. Scherer studied crystal growth rates
of the Na,O-SiO, glasses for the different Si0»/Na,O
mole ratios in the temperatures between 500C and
1500C. And he reported that the temperature at which
Na;0-Si0, glass crystallized into cristobalite increased
from 650T to 700C as the mole ratio of Si0./Na,O in-
creased from 5.7 to 65.7 [ 12]. Considering the result of
Na:0-Si0, glass, it is believed that the presence of
Na' ion is the major factor for the phase transition of
[BJZSM-5 and amorphous borosilicate to cristobalite.

The transition temperature (=750C) of [B]ZSM-5
is lower than that (C>950C) of [AIJZSM-5, although
the Na contents of [ B]ZSM-5(Si0./Na.0=63.9) is less
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Fig. 2. XRD patterns of (a) [B]ZSM-5 as synthesized
(Si02/Na,0=63.9), (b) Na-free amorphous boro-
silicate calcined at 750C, (c) sample of (a) calcined
at 750C, (d) amorphous borosilicate (SiO,/Na,O
=50.9) calcined at 750C, (e) SiO, quartz powder
calcined at 1500C (u-cristobalite).

than that of [AlJZSM-5(5i0-/Na,0=>50.6) 9]. There-
fore, it seems that the extraction of B atoms from the
tetrahedral sites of the ZSM-5 structure is easier than
that of Al atoms.

Other evidences for phase transition were obtained
from XRD data as shown in Fig. 2. Fig. 2(c), (d), and
(e) showed that [B]ZSM-5 and the amorphous borosili-
cate (Si0,/Na,Q=50.9) calcined at 750C had the simi-
lar XRD patterns as that of SiO, quartz powder calcin-
ed at 1500C(a-cristobalite)[11]. From the XRD data,
we knew that [B1ZSM-5 and amorphous borosilicate
calcined at 750C were converted to a-cristobalite. How-
ever, Na-free amorphous borosilicate was not convert-
ed to a-cristobalite after calcination at 750C, because
its XRD patterns as shown in Fig. 2(b) is completely
different from that of a-cristobalite as shown in Fig. 2
(e).

A small peak was observed at 20=27.6C in XRD
patterns of Fig. 2(c) and (d), which was rot found in
XRD patterns of a-cristobalite. It was reported that
crystalline boron oxide did not have any strong peak
at 20=276C except B»O; having cubic symmetry
[13]. Therefore, this peak can be assigned to the strong-
est peak of B,O, having cubic symmetry. When [B]
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Fig. 3. Infrared spectra of (a) Na-free amorphous borosil-
icate, (b) amorphous borosilicate (Si0»/Na,O=
50.9), (c) sample of (a) calcined at 750C, and (d)
sample of (b) calcined at 750C.

ZSM-5 and amorphous borosilicate are calcined at 750
C, By0; can be produced by the reaction of oxygen with
boron atoms from the tetrahedral sites of the ZSM-5
structure.
2. Coordination of B atoms after phase transi-
tion

High resolution solid state magic angle spinning *Al-,
#Si- and "B NMR is the most powerful technique for
the determination of the coordination state of atoms
in zeolites. To know the coordination state of B atoms,
"B NMR was used. The NMR band of B atoms tetra-
hedrally coordinated to oxygen atoms shifted from
the band of BF,0Et, in the range between --3 and
2 ppm[ 14_. This band was generally narrow and sym-
metrical in shape, bacause of the very small quad-
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Fig. 4. "B MAS NMR spectra of the fully hydrated [B]
ZSM-5 (a) as synthesized and (b) calcined at 750
C.

—40

rupole coupling constant (< 0.5 MHz). However, trigonal
BOy units had rather a broad band because the quad-
rupole coupling constant (2.6-2.9 MHz) was larger than
that of the tetrahedral BO; units. Scholle and Veeman
[3- reported that the dehydration of [ B]ZSM-5 made
the highly symmetric tetrahedral BO, units distorted
to much lower symmetry, resulting in substantial quad-
rupole interaction. Thus, in order to avoid NMR line
breadening due to partial dehydration, all the samples
were fully hydrated in a desiccator containing aqueous
NH,CI solution for 48 hours before obtaining "B NMR
spectra. Fig. 4(a) and (b) showed "B NMR spectra of
the fully hydrated [B]ZSM-5 as synthesized and cal-
cined at 750C, respectively. A symmetric and narrow

Table 1. Binding energies of [B]ZSM-5 after various pretreatments

band was observed at — 3.9 ppm with a half-band width
of 50 Hz for the [B]ZSM-5 as synthesized. This band
confirmed that most of B atoms are incorporated into
the tetrahedral sites of the ZSM-5 structure during
crystallization [2-4].

However, for the [B1ZSM-5 calcined at 750C, then
fully hydrated at room temperature, the band observ-
ed at —1.4 ppm was broader and more asymmetric
than that of the [B]ZSM-5 as synthesized. The half-
band width of [ B]ZSM-5 calcined at 750TC was about
5 times as large as that of [B]ZSM-5 as synthesized.
If B atoms still remain in the tetrahedral sites of the
ZSM-5 structure after calcination at 750C, the half-
band width and the chemical shift must be nearly the
same as that of [B]ZSM-5 as synthesized because [B]
ZSM-5 calcined at 750C was fully hydrated before
obtaining a NMR spectrum [3,4]. It was recently re-
ported that the transformation between tetrahedral
BO, and trigonal BO; units is reversible upon dehy-
dration and rehydration [3,4]. Therefore, the NMR
line broadening and the irreversible transformation
in the "B NMR band of [B]ZSM-5 calcined at 750C
are due to the irreversible conversion from the highly
symmetric tetrahedral BO, units to the lower sym-
metric BO; units during calcination.

The binding energies of [B]ZSM-5 as synthesized,
calcined at 600C, and calcined at 750C are given in
Table 1, respectively. The correction factor for charg-
img was smaller for [B]ZSM-5 calcined at 750C than
for [BJZSM-5 as synthesized and calcined at 600C.
The binding energies corresponding to [B]ZSM-5 as
synthesized and [BJ]ZSM-5 calcined at 600C were
nearly same. B(ls) binding energies for [B]JZSM-5 as
synthesized and calcined at 600C were 197.5 and 198.0
eV, respectively. For the [B]ZSM-5 calcined at 750C,
however, B(1s) binding energy was 193.8 eV and low-
er than that of [ B]JZSM-5s as synthesized and calcin-
ed at 600C. Most boron compounds having +3 oxi-
dation states containing trigonal BO, unit have B(ls)
binding energies between 192 and 193 eV [15]. An-
other important observation was that the intensity of
B(1s) binding energy band for [B]JZSM-5 calcined at
750C was approximately 1.8 times higher than that

Biﬁding energy (eV)

Pretreatment L o Correction
condition C(1s)* Si(2s) Si(2p) 0(1s) Al2p) B(1s) factor (eV)
‘As synthesized 2843 1513 104.0 532.7 732 197.5 42
Calcined at 600C 284.3 1543 1035 5319 72.2 198.0 42
Calcined at 750C 284.3 155.8 1045 5334 - 1939 37

*The C(1s) (284.3 eV) from the zeolite was usedmés an internal standard.
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Fig. 3. XPS spectra of [BJZSM-5 (a) as synthesized, (b)
calcined at 600C, and (c) calcined at 750C.

of [BJZSM-5 as synthesized or calcined at 600C(Fig.
5). Therefore, it is concluded that considerable differ-
ences in the B(1s) binding energy values and band in-
tensities between [B]ZSM-5 as synthesized and calcin-
ed at 750C is due to the release of tetrahedral BO,
units from the ZSM-5 structure and the migration to
the exterior surface as trigonal BO, units during calci-
nation at 750C. Surface enrichment of boron com-
pound was clearly evidenced by the increase of the
intensity of B(1s) band after calcination at 750C, be-
cause XPS technique is sensitive to detect elements
present in the vicinity of the surface of the sample.

CONCLUSION

1. IR, XRD, and "B MAS NMR results indicated
that [ BJZSM-5 (Si0./Na,0=63.9) and amorphous bo-
rosilicate (510,/Na;0=50.9) were converted to a-cris-
tobalite and that B atoms in the ZSM-5 structure were
converted to crystalline B,O, phase having cubic sym-
metry after calcination at 750C.

2. "B MAS NMR and XPS results indicated that
calcination at 750C caused B atoms to be released
from the tetrahedral sites of the ZSM-5 structure and
migrated to the exterior surface of zeolite as a boron
compound having trigonal BO; units and a oxidation
state of 3.
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